五十五.第二理论(1 / 1)

 fzuTD7Z+VublTr8/9IiqwWZ1Hv9kNKZdAy9zZZ9P5ckb1+SuaL8gNyqFd2IAti1qijFWlhIzqAQ+kZOfRzj6xbWO5qpkYQOT0sWMho/mch2flhws6lhJkB1cMz1uBGM8kPm2KKSJ/eoRtxalD0tJ8WAWFu7VYs5SxWy/J3VcIMJUOEggfYT+5zPvJqioSC+ci/laAwf7WDmgSrQv2xVCue8MeUT1Pd0EHugkTbkkBjSVAfNSnjTTbmVcRHAOJyELQ9uwgf+7h09xqhIF9XNHn2ALbiwXTXqLQaeh0NwecuHX703k2Xb66/goG9kTUWxFCM69qyaHBbLXyxcDXO6E1PdQnBv64jPXbtBEzD6q6sHjRyQPYjFBLE+IktVOAhqt8HWbJYX7ev+LU5YQmaUH+m5Pgg8Bo/Fh6+Wjp6pJcS/U0D8DfRiQR55e6Yh/WbUPTNK663tLGJybq+Rl3MYV+Yf+THDimd0bVjEBDHug4Xc2IyMxdvMC+gJ8oV0TWhA8JHmy9EZE1/xbeP1DsAwSpWxKAYzZOzDM5q6BfHfzqVey8u/lJJYl6q6f0QsouuOv4oT+8iXaq/2z+fh7xW4Xq8/YIhPkrn72dU/Q5eSr1ERig6XejSStPcwIG/Vv/ImwZ9cX5JKO3jaw59eyF+um073WJJVdbptgft8oIG90UnYSWAmK1AmEVOTOgy6gDd+LcqDaOO6ChjC7Zf2Hc44554XDRI10cgIGwxkjsbXbwg0vzmtSOuRVRNwvCxVfTTOshXLJPAoeEQlbZiQnCWxbr5Epdj0kZhzHTHDuPeO+/pgasCd7By6tC2oAbhTeUq/JVAhPdK/pyaJ4t5jwZKK89MEve+tRQRZ+B4QQuLml8SFl1s6pzX2zgu8adX2m5O/X0viAwq6Xaa0hjtW/BgKbUCci+31HZPWXqMr3cm0txYJGw0brzYdPBR1uHtm7F+RKXieMyaapbnLRk1ASkIP8dlnV0PkSbzDQ9kLATT0tdZkNgcUad7IRHhE+8LP0QlVhn+YR/OKZizZKMjtV+07PV1SQuMF13QY1yZIluh3BOoNj6OZqxlEVHyfhRt/J/w0kAXHJvqShirVP/ozB+JNFLd4ZTDUOCcXlUcAm1tEqk/gTGLp6rHlucsRT2g46xtrsrf834vS6/FHNCz4HqkT/D+WZbTjJkpP3PVPFEMpgcOpQukeu9w1BpHKJCtI1wDU8DbwTy8Lk4mSthDtCll5i9m9aMSdigbvVy2aplYxw1ojyblyJnIBesKxminBFp8hCTsYSuuLGGoAxkdVTTEn0zSvzqVIWxjPzG7g7T8Yegk4YIDfvC8OpZDFioccpbGG4+VORyA8k8ZRqIPuoYrIsEb884Wlq7JIo0y3xBCyAH0i92zRrrba6Xj7m5BlikHoINy3wjxg/DytirVLBz0fQNwEjCMXDWuuBfEFTTPsuKEl2QrHZVKDdmnr+gUO0anQnOhZRl8T4R3g9NyH/lPALA1xAuGR6TceYpPVzs1VY7G1ZJ1MQGrJy7tkMQWJ1OJbGdYhGlDAyTEgo5TvkbHTK4hebVnYPfCed75Cr6rYy4E+MQtXyWPESZo+sHSwanS3HZv6XyBQrz70XXuM1fnGGulyM8vhm/3UMOXbGsf34WNxX83GZwqyp4Dr44MDH+/SkbyF+7rexuRnQuRSNW+xGeyyRsxsR0utxxQBbfvFIzOzk4EVEWPxIHuIK78VZVLBpUeZqnVaRnWYgJYojRxrvxhCZP6ED8Zkx/LKZp54f6epA5/bXa0i+FuXfmnL9NPXKvwgi/f/u68lTODoeF9w5vu4dq3VK79h5yCJi5114I6BciFev3mdRWFiAFaI0aGjo9bf5gOp6leNfyS7xknBjRscLdt13zKqkkGU0KGo6cIQM5gpBgFmBkgErfvuhKggtcu+jC5V0VaU53VbHjUAF9wiyQTTbGvXs68b8BhRLdx6H5Q5hLP8L33wLk0wdxdMkx1XjMAChh30HA0JhQAgDiZPPfAO2mOdFc8uOi49pccxtk9rIS9+MDnxf0lSBYi6nyFvlAlDJATVSN0PGODRNPb4mnL8TvZln3neUIFQ7G0fI0XsimROvTTE6a9Ipynr/mjqxhhJaE4RIyOOty1OIreBjtL3vmWDI6p72GDIY9kyHlDjNjbthElfHUW+l1d2fIgVg63PJpLlTu01l5w15YRXk3qPXT4J8JNpxijurJ7ttGVZSpSiMRiluENIixDrqplYoVqg7soi8DdHeZNvl1xgcvgXEi+hLPIgRBwTFSY2Hn0I8JNruoJaSb878OxZ/2Z7eWQ43kFF8sC2qr+DDL76llXXiNqG0FTVmAz4hb1/TsOD7/5KqVqFAlvoMUyOLvIpnmuh8RE3aDpgA9XG7pOjVjwgwy3Gsx25+N/P4qA9NRZ5f5icWB5vpguJwZrzv9+DPeMAPlrR46hQKiLftXsJLN8SMr3HjoAtgC/lJxEyHteXwdXmkFUDvrNZ7otXXvuZi7EId3bSBr2RHfINJ/bVGFQ35SrusiEauxZq8n8MtjPVyHxz9tG3mGOQX3AXnuDj7pDsVpUViaTMFUFAJlEsGNP5NORrfR0orQWr7k2qIlqI/hrIiMt/o1VtOKHGq1utlh12yfPkUtrpfSxP2zhcrCdFMrw48uSUyDqCQJyFps4isBakWBPhxxMY2YYMTuGAEOMUO8/Nl3Bp1h/9RKD/IUaa1kEWjB6ZhpHo4S0m3Obub9ruk4HzpEnscXU1ojsvDeS/UTgX4K4vz6heQOtfHFKUhwKTC8/90s6vb950is+XaLYEBP0FwlKqywBvUDJIzGTnVgR1ZZR2xSRsyQrn19vLlLgaXvnj70PIfRFB7JB/2efv/5I9R3cRUSlSwR+jpYC78PMSxRuYdzZGaR/GK+mswxFgRs3msyJq62bz0eOBsFyrY0Q+BqeiwJ50HJ87BbwiC2RpTkr/XDHGXsh4AR40fUD893IldfdhxaIzyT4X8440qIJsAZui2PCpZxCobX7cr4e9DOQXyP2SO6HtHFjK1YGs99YX3Ij0Q/z1w8qG/iR72g1yVTUuCrCXOolY42sTAVnCzlTwOrzBiHtD55pdcpYK5yodu+FPzzJIuhmFHLAH+8TxFDIwbi+m95B69RhoONN6pLfT95WG5SRjF9HH8KOvtHdvvtrLr3MAk3tLLhmf+mjO7wBLGARc3Y9vAWS/xnwQMNZHOXBPUsw5JA3gUkYwIFxx/aKzclTzFgweGbjfSEbLG37Lbl15y5kioVYN+QHkVzqgHxdh1Mx9aPLWIjVbT36bW0FrRQ9BlSdSsj9a4IuIsOHxc5E5g+4lBUOydBggOohwVxxBGlMXVMXo2H3rQLBDtAt1exKesONHxOWvCJAOL+ue4LQ7Le9pFTARG1+gyUiKg8JGPbbBwGyjn5AIx7hwtN7NpB64WYufToGooijQAwbQ97U1LYYZkvsm9Rjd+P7YaUGmWD15t5I1Ht4sqs7Y7ns8Y3qyDl979eUB/rG00CJ6ppwbQCmWzhgu3RZIYf8XrpBAhWWHPp7uiSpSyKujPKpSRB9aXTlFdft0bqo+wl+4A04AWQ5qru/BaVa/RHaU9iZOoMrsH+OcRjE3v1Vq9hPanMK3R3YVz8rIfgbN97Rj9qC4sxBzKuXYrxt51iVPGGhzuCxft+4DRgXAn2T6gAyE+0V1/YW2SYDCL8+ZVTg/qkQI+pLdedrzbfd0gAa1chIfhQyyauIPqWCTLBpyAsD4exmuUijg1fODznEE302fgLrFPJqC8csCVJ51QH469MyCSz7ypclRyqDkFOHlitVdTxXHTOKy/9E/teJHGo6+WztV/sm6KqXBBvUvbK43FuX7oEFR3xfOGHgrIPdWxuBkfOTVRJxPN83PFyaRtXrabYmwqfRLptTw0GIxODRqTX8QP/TJ/ok/+r0B0SXvEPHMIwSNplX/USZLhMQHNL/yqA6XF3A8qYzJ2uvFFT2yQ5rY4RbWaiJGnOUxF/+Xqi/YcRcKb6/1+wDEAzLuaSZsWoE43llIj1JIP7NbgrpSl3oDG+myDQZX1dqN6m98kaj57TkFg6+q68bqp9Jb0+DJjPf/AJAy6g6W6RHc90IIhq++odjOgIi1zKa3//eRQ/4jZVno6Cb+VsPUGHE09YQrYK0oSw9ejkxCzYo6HUTjRW2LEkbDrS0stigVDS2lnTobm2O6BLuKcqGUIrD8J7InU+8rW+DD3wtFI7loGphxFm08VJyAgbUwfErevWgMpjJHDb3fZ5xCtbJ5kwkOjFY8bB92EWsMuwhgXTd6gX8lFixD9LLAct+9moPTOzYDXNb/Znn79MVAONJ1LfJYBJh0DqPkqr/q5BIx+kO4dBe7UVpofoFv3LD1yN//hk+PZPeLnuNkxrHqmieok+QB5qb4AD1kMee7IRbay0wxVH8/yRqhpk4LWiZo+euwZsSa0HSjiZvMUWlGG584ySl3UbFQZzTYGUNJCfiFwpJeFVV/UdyfquKjU/9k9253rrxWj92bgnNLDkqyB5tsynGXioGWhHEAvzOwm0eB7ORAYr4DmoPdZjbTUwdlKeRpNeyu3lOma9imQp9gNgUp3YeRhDOs42Ow4dMwoEPxN38XLGe2V6VsWf/5kZrtQq+VwuiTkEjvI45ypTKedUFq9H7Z5Sf2CGY72MP60Gh6YyC92XOa6oCJ9DQzoSA4BPOTza8sjP0233MJMn2hIiAbkSXQUAsvfRVNgJ2u1WthX9kKdOTtWSuhpcQW5sCLUDOQWEEF8BeN8/ysgRvRxErAt0vXSp4VtZWKYyf+idaMNzBkklXgDJ3J9LgaIgAsmZmIkxGusl/6JayLW/p4gQbs2MJ1UQ81xIqhly6CsAYKZvZmQodCXHsdAw+jreRSLmV6RJlfX6oZpiY0OwmUWzAOR8i+mOwJC6IvkL6cBSWLjQLbHZJdSUA5db041SpSvGjluIYyu7f54te7XHdaMmnaRace2L/UYRo8kL5xPCQFAxqqZL0+nqLk9YTsm+Nhzw+eMCselSOhYZSOo70HBFGVGy7vfPSaWDRYlCrjj3ZiuTIFKTqbOcGm7Bd6Sub4ZNwE8w3SPAxl8cxfxmWor/jsVQiOuzVKJ0Et74MjuDTm07e5lUECpXfiqbP2+VpAM2Ik0aAZ9acqce8/4JAtpY9+zhEQFPL9T+1qgmMGjs78WwU958QZnZMdqot0I5JZB0+Hqn9xadAoNG1R8sE7Hv/j8Ic7gB5fIHoX7SzEnDBvOitblg0YQmMLCxDBd6/x+/a60F8UJavNgDbYxzx4Vag3JORV3epMXHN0oggJ37alungtvKnTM/sKNYtFCSQ48iSk8Vh3UbHfusqEIZMbdiDbGqD8uLHS38IkC2GLyF6hqds7gGpc1OoTpJ40Uzk0JhT6IQQMW2fN6OGfKz+aPqZUoTt/sng6O+4fjVU6vzj4zLpVFyWeYPMq954IzOQlE5U97XS3BJwXqYlPinOsZcxtwM1QGrtzASaq6hKCsgjHootBcY14qkO21kDeS+UlAVAJG8WEMHCk987QaBMJSIpa9a7lW8kLc1HOuu4vSgUZl/qlbRJRZ17QeRQMf/nUn7hFAs/bgM19m69doyEIez8tABScI+ZUK9zIj2S0H3TxWrSZ8/D+8MMW/Gr3Ljvz+YLuiFxlr/JKWI+bF5h/s+AOugiPno2GVFoO55BNL49N5ZK9kSNjqoYGobq4sabovfiEhdNYHMtHs7ih78kmZ/wlrFquQHKM3mRj6Df6sM3Q7lBk6CjTIbB/blCyBUK+SHYvUTxpqJhesSapKa/Xm2YDNu+Q8P3mDLCcRlxJZJf3PC1wKVPxmZgc5+97E0YXsDjiY3aoRBI4Hep9OL/9HVIWR12X4b9ZuZgO+pfhiUxXHLuBdKL5d2goYo/1mvM76xK9mLk5US7Omnr7oaOcXIV7U+kahyoOHwPkSdXx9TZa0UihgMdEmNrf6cF6bxgcDA8avA4gS0v+sDKeWXhWKM2qAxo03iWOw4+kVK2tLVTMFEUosnf5HqABKNtRm1JqcRdqjKcIj4sDbCQ9hv0tf/kuzEhDCkO69c7F0ul0Y7jy+H61bv+hdAxpwlvblkKU1KSsTz1ka/phanwoQBU8nUkN6PkzqeofJ3EyIMswtTQtBJrV5BKqH5KgOuN318OhpKmJzjsEzteOMsPFruof16jHsK12gajoubE9MYy/5qb6SxgOs7a/+6T8YMsgBuIRhPOB0RPgq9kSsN0QzfmLW3k57b/IM3QrA4EEMCcytKsqwMkGAwqY03g83p2zyL5x4sXrvkQVBwqUgBJf3UCWE07L6FuBG1h/ljIUPEadQTMiUE9qDItrb55JtuL+8Pkzjbgfih2FMTsy+UgXpCEMGqYUuTmZIyVfhXOi5m5YmS3BjrXDx76GFkLV1eWr0Mrl43sHS9EubSLYDlWqZSG+lmQdKIw+UjmsgW1P9hGENMO3VkRK4fTKdhfaTQRGyH2JXbEjpPEYtpTZZsR9yLvL8ZMOAzvjSPHGK8otlcDbX81IxXctQ6vQMizy+AA8Lw7XiT8CrqbXdCypdPqtdM+74WYu/BNTP4jUb0+DK7JB8ITOc+U1as+bVbTRJNEZS5gyVgtx700DC0s+cAKCzv3PSjTb8UeIDt20Hnq3p4+bIEkf0ZHhrnmxV+PdZJzhQzb6l+/w3/fyBzNSP8mbvxnIBjAaItz65ICyUfOIqIGL5gIuCyC3W0IBWSAaq3PqRDsH/BjpKOqwAmxgtjZ3s7hIaYEd0tH5H0gxBjm3BH5Hq3MXG3dZq4CVLCe7Ww+A2qvdN/9+rS71K5UFt63Uv7ozk7n3QFaFmsuW3L/hc84JHXP6uO1rKDkZ7bC+csFs/C9Asah5DSvILiwzuFnAH9o/y/Q3yu2nTF6dZCiS3o4EbS6G7rI4cTzU5tMmEZfv5hHIUYtBJHIhVBDkZ9dfbjjLcOOShwBWvKbE5s5ZAuTX3fzNIQGP+SACDCV8Jfdm1BfEEf0iix2L2kjCvSfXXz9tsfOLd/Nx9V3QLaBkMW5RIbbu4pTHaMkvRVIRXaxM4d/YmgteSTFpr1beaFGrn23dGIV9J1/IfV8DAaXKOxwvbLPdVtxgbCBDbQgj6tPLfpV2VjfPryeGv0jRL6k95EyQt1CCHQIpuCeKTEFwaKgOh3tQwAzh3XJQ+nQVuGm6feJa1KjAxqDe98NKUTy5n0U7llV1cX7pFC+llmQqXGyXFVogO3aAFs49jvVfJhpxtVln6+9Nl+PqIJbEryYVKy82Ar+pe8HGrlWQzO/5vd52Lg7dk2f1oj0xHVEUFb6snKjNkOR5/ulMxnn87zLoMAGgx1o3SOuGLuOFSN7Zc2kjgCBZPpRsbwYOQvsVTF6Tv7pGCJAQX/gO/TNvNJv/1nzFT2xVHCXXJw8uf8PRuL1+wmXaD9k9ey9Ymqcqjoc12aTttJbs9JzM3U8EyGNYu26AVWN9unHmt9cyMd1yjpLUa0C5jYR04Ivj/8qCP6Mva13ZVDRezMHv3BHoxYgi2eTnmJ8cStX++aZhw1IZX8MrQNiBGH27mQyA85MTAeXsXj2y7rl43zp8tpHpFeK+L0f22+RarBjLAw+2zAXqVZsMVIJmo9KQp7P3avnIOS1/UK3NLN3TfcpvR7ErmHM//CYfgv/i9GpGT3f+bwBJJBYSK/8XKH5eTKZ1uoiyt4GQGNnF8JHbY4RVayK/pFatLtvvvI/s4XEEyROC8Lb5wqkVvj2oOKaS77OAHHUtGL3DRjsjiewNG3a9ufSfm26QUaY81dn5/ItV3yio=